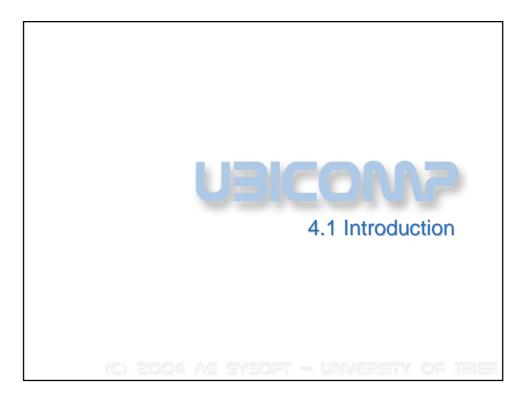
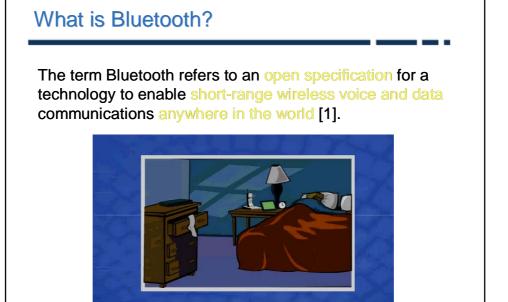


Hannes Frey and Peter Sturm University of Trier

(C) 2004 AG SYSOFT - UNVERSITY OF TRIEF

Outline


- Introduction
- · Bluetooth Fundamentals
- Bluetooth Protocol Stack
- · Selected Protocol Components
- Bluetooth Profiles
- Summary



References

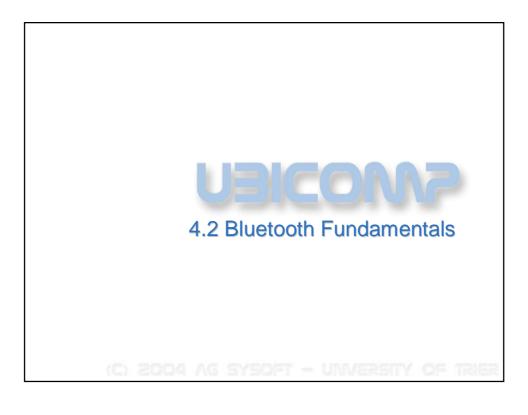
- [1] Brent A. Miller, and Chatschik Bisdikian, "Bluetooth Revealed", Prentice Hall PTR, 2001
- [2] Bluetooth Special Interest Group, "Specification of the Bluetooth System, Volume1 and 2", http://www.bluetooth.com, 2001

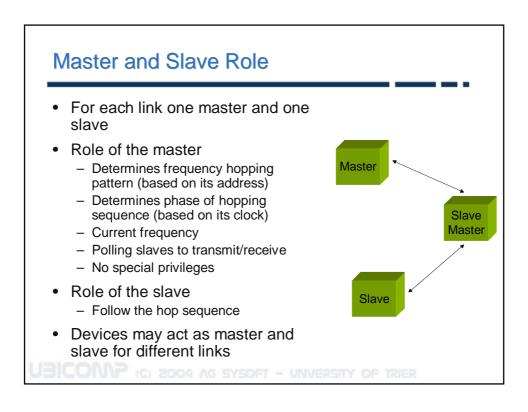
USICONT (C) 2004 AG SYSOFT - UNVERSITY OF TRIER

JBICONP (C) 2004 NG SYSOFT - UNVERSITY OF

© XILINX

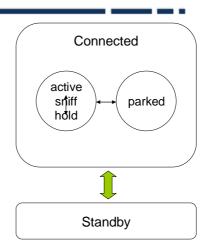
Bluetooth History


- · Early 1998 Special Interest Group formed
 - Code name "Bluetooth"
 - Promoter Companies: Ericsson, IBM, Intel, Nokia, and Toshiba
- May 20, 1998 Bluetooth publicly announced
- July 26, 1999 Bluetooth 1.0 Specification Release
- Today Bluetooth 2.0 work is ongoing
 - Promoter Companies: 3Com, Ericsson, IBM, Intel, Lucent Technologies, Microsoft, Motorola, Nokia and Toshiba
 - Currently 1883 SIG Members
- Harald Blåtand 10th Century King of Denmark
 - Literal translated to "Bluetooth"
 - United Denmark and Norway and brought Christianity to Scandinavia
- What means Bluetooth today?
- · Bluetooth tomorrow?


Bluetooth Usage Models Bluetooth as a cable replacement The cordless computer The instant postcard Supporting voice communication The ultimate headset Three-in-one-Phone The speaking Laptop Networking The interactive conference (file transfer) The internet bridge (dial up, direct access) The automatic synchronizer Ad-hoc Networking Hidden Computing

Radio Frequency Wireless Communication

- RF Communication range
 - transmitter's power and receiver's sensitivity
 - Long range communication requires high transmission power
 - Battery power achieves communication within a few meters
- Radio waves can penetrate many obstacles
- Usable radio frequency space is finite -> Licensed frequencies and power levels
- 2.4 GHz spectrum is globally unlicensed, however ...
 - Spectrum divided into 79 channels
 - 1 MHz per channel (2.402, 2.403, ..., 2.480; LGB=2.0, UGB=3.5)
 - Frequency hopping spread spectrum must be employed
 - Interference must be anticipated and appropriate handled


Spread Spectrum RF Communications • Dividing available spectrum - Frequency, time, coding, ... • Dividing message in packets • Frequency hopping spread spectrum (FHSS) - Spectrum divided into channels - Each packet on one channel - Sender and Receiver agree on the same hopping pattern • Benefits of FHSS - Reduced RF interference - Retransmission of single packets - Provides a low degree of security

Energy Conserving Baseband Modes

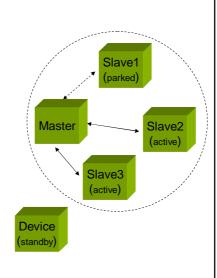
- When not connected the baseband in standby mode
- Connected slaves maintain synchronization with master
 - Active: slave always listens
 - Sniff, Hold: master and slave agree on certain time interval
 - Parked: slave must do the transition to an active mode
- Responsiveness vs. Power Consumption
- In all modes adaptive transmission power using RSSI

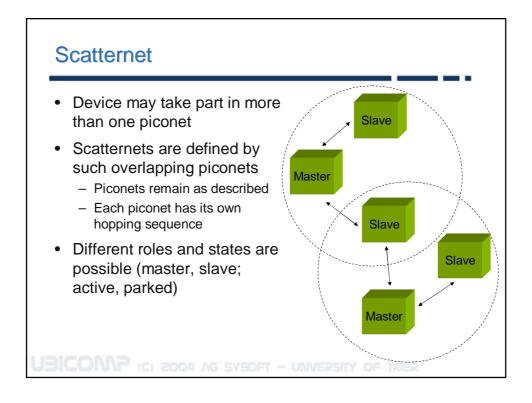
UBICONP (C) 2004 AG SYSOFT - UNIVERSITY OF TRIER

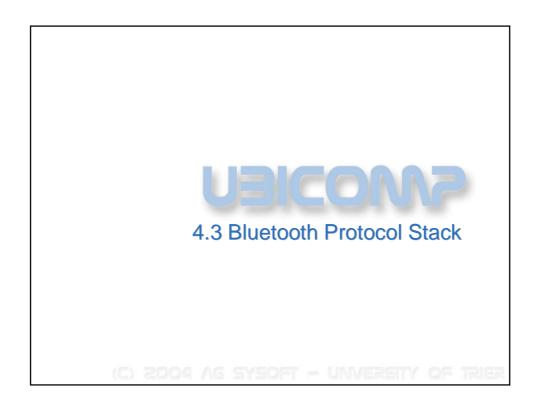
Question from the last lecture?

USICONIF (C) 2004 AG SYSOFT - UNVERSITY OF TRIEF

Bluetooth Energy-Conserving Facts

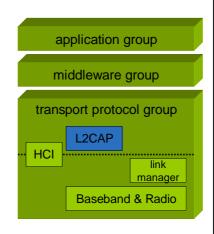

- Joule, Caliorie and Watts
 - 1 Joule = 1 kg m^2/sec^2
 - 1 Watt = 1J/sec = 1 kg m^2/sec^3
 - 1 calorie = 4.19J
 - 1 g fat = 9 kcal = 38 kJ
 - 1 Mars = 300 kcal = 1257 kJ (approx. 3h bycicle ride)
- · Bluetooth supports two communication ranges
 - 10m: 1mW (pure transmission power)
 - 100m: 100mW (pure transmission power) (= 360 J/h = ? Mars/h)
- Computation is cheaper than wireless communication
 - Pentium4: 26,4 nJ/Operation (2.8GHz@74,9W)
 - ARM7TDMI: 0,06 nJ/Operation (133MHz@8mW)
 - Bluetooth(10m): 90nJ/Bit (brutto 1MBit/s@90mW)
 - Bluetooth(100m): 500nJ/Bit (brutto 1MBit/s@500mW)
 - WLAN: 358nJ/Bit ??? (see episode 3)
- · Short range Communication is cheaper
 - 100m in one hop: 100 nJ/Bit
 - 100m in ten hops: 10nJ/Bit


UBICONP (C) 2004 AG SYSOFT - UNIVERSITY OF TRIER


Piconet

- Master may communicate with multiple slaves
 - 7 active, 255 parked
- Piconet is defined by one master and its slaves
 - All slaves follow the same hopping sequence
 - Not all devices in proximity of the master are in the Piconet
- Typical piconets are expected to have a few devices

USICOIVIT (C) 2004 AG SYSOFT - UNVERSITY OF TRIES


Protocol Stack Components

- Transport protocol group
 - Locate other devices
 - Create, configure and manage both physical and logical links
 - Transport of data from higher-layer protocols and applications (asynchronous/synchronous)
- Middleware protocol group
 - Provide existing and new applications
 - Existing protocols like PPP, IP, TCP, OBEX, ...
 - New Bluetooth aware protocols like RFCOMM, TCS, SDP
- Application group
 - Legacy applications unaware of Bluetooth (e.g. modern dialer, web browser)
 - Bluetooth aware applications (e.g. telephony control via TCS)

USILUIVIF (C) 2004 AG SYSOFT - UNVERSITY OF TRIER

Logical Link Control and Adaption Protocol

- Shields higher-layer protocols and applications from BT details
 - Frequency hopping
 - Packet formats used for transmission
- Enables protocol multiplexing
- Segmentation/reassembly of large packets
- Negotiate/control the level of service

application group

middleware group

transport group

USICONT (C) 2004 AG SYSOFT - UNVERSITY OF TRIER

- Bandwidth allocation for data traffic
- Periodic bandwidth for audio traffic
- Device authentication (device pairing)
- Encryption if needed
- Power Control
 - Active modes, hold mode
 - Adaptive transmission power (RSSI)

application group

middleware group

transport protocol group

L2CAP

HCI

link
manager

Baseband & Radio

UBICONIP (C) 2004 AG SYSOFT - UNVERSITY OF TRIER

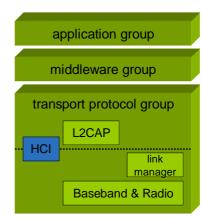
Baseband & Radio

- Device discovery and Link establishing
- Definition of Master/Slave role
- Forming of the frequency hopping sequences
- Rules for sharing the air-interface
- Defines the packet types for asynchronous/synchronous traffic
- Packet error detection/correction, encryption, transmission/retransmission
- (Audio has direct access)

application group

middleware group

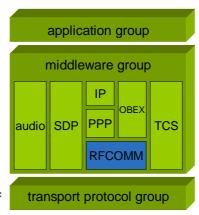
transport protocol group


L2CAP

link
manager

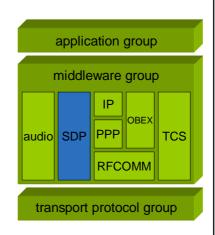
Baseband & Radio

Host Controller Interface


- standard interface to access lower layers in a BT module
- Interoperability of modules from different vendors
- HCI Command: set a BT module in certain mode of operation
 - device discovery, request settings, ...
- HCI Event: inform upper layers about a BT event
 - Result of device discovery, requested module settings, ...
 - Traffic passes through the HCI as well

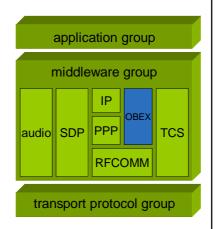
UBICOMP (C) 2004 AG SYSOFT - UNIVERSITY OF TRIER

RFCOMM


- Serial port abstraction
- Facilitate easy migration of serial port-based applications (e.g. dial-up networking, synchronization)
- Modeled on ETSI TS 07.10 standard
 - Multiplexed serial communications over a single link
- Termed as one important part of the protocol stack

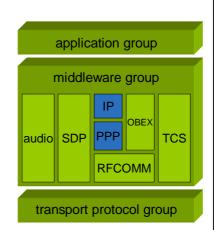
USICOIVIT (C) 2004 AG SYSOFT - UNIVERSITY OF TRIES

Service Discovery Protocol


- Services in traditional networks:
 File serving, print serving, name serving, bridges, gateways
- Static configuration of services insufficient for dynamic ad-hoc networks
- SDP provides standard methods to discover services at connected devices
- Symmetrically, SDP enables description of own services

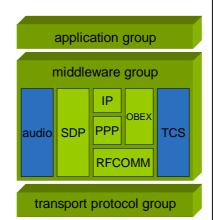
UBICONP (C) 2004 AG SYSOFT - UNIVERSITY OF TRIER

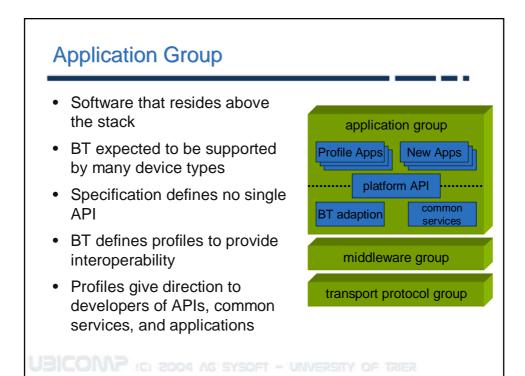
IrDA Interoperability

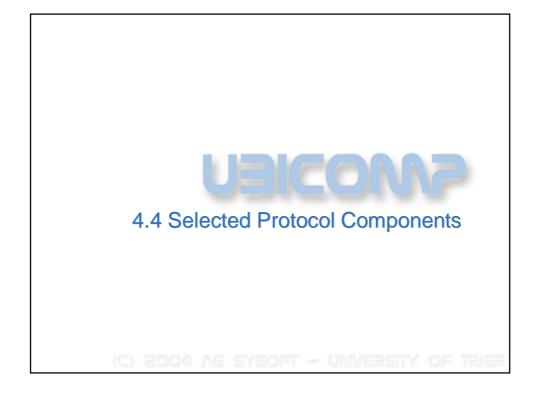

- IrDA defined protocols for infrared Data exchange and synchronization
- Fundamental: data format (syntax, semantics)
- IrOBEX: exchange of well defined objects
 - Electronic business cards, email, messages, calendar entries
- IrMC: Synchronization of those objects
- Bluetooth adopts IrDA protocols
 - share some important attributes
 - Provide interoperability at the application layer

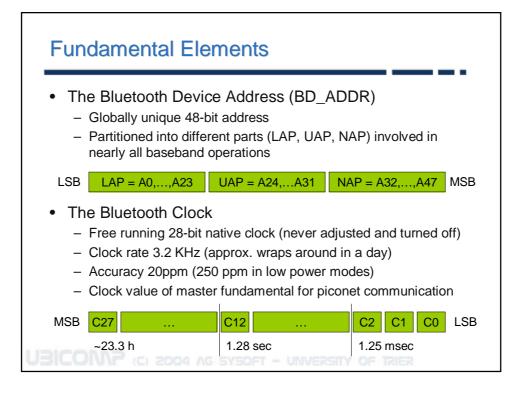
URICOMP IC PROVING EVENET - UNIVERSITY OF THE

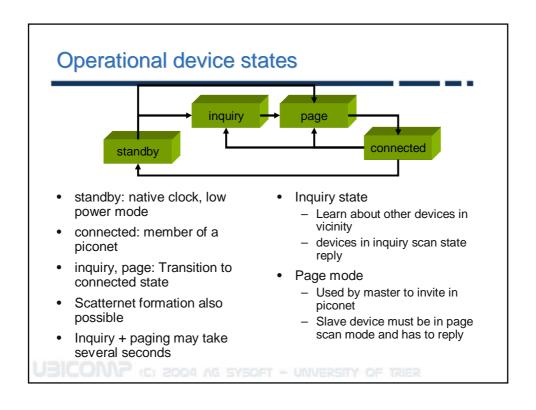
Networking


- Enables connecting to larger Networks
- dial-up networking
 - Via AT command layer and RFCOMM
- Networks access point and PPP
- IP over PPP
 - TCP, UDP, HTTP
 - Interoperability with WAP
- Future: Direct use of Internet protocols with Bluetooth


UBICONIP (C) 2004 AG SYSOFT - UNVERSITY OF TRIER


Telephony control specification and Audio


- Bluetooth carries voice traffic as well as data
- TCS layer supports telephony control
 - Voice calls are carried over audio channel
 - Data calls carried over L2CAP
- Audio is routed directly to the Baseband (isochronous traffic)
- Up to three audio channels at a time
- 64 Kbps (PCM, CVSD)



USICONIT (C) 2004 AG SYSOFT - UNIVERSITY OF TRIES

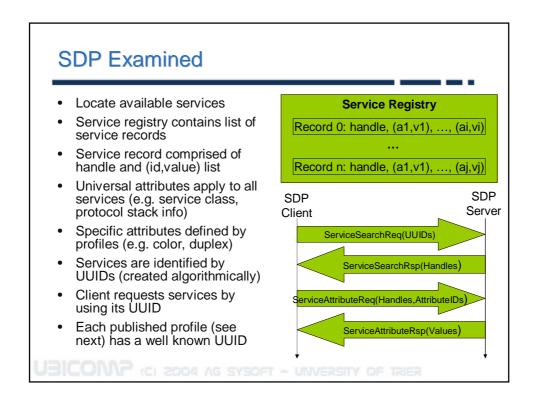
Frequency-Selection Module

- FSM Comprised of ADD, XOR, and MULTIPLEXER units
- Some countries allow only 23 channels used in 2.4GHz band
- Address and country mode determine channel-hopping sequence
- Slave uses address and clock value of master device
- Clock determines the current phase

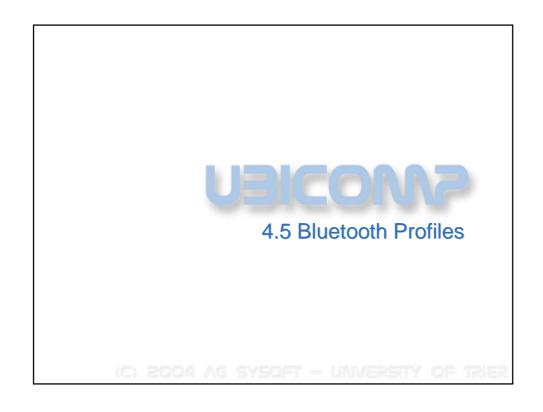
- · Normal piconet operation
 - Channel-hopping sequence
 - Bit C0 not used (0.625 msec, 1600/sec)
 - Long period (pseudo randomly)
- Page operation
 - Page-hopping sequence
 - Paging device uses C0...C27 (0.3125 msec, 3200/sec)
 - Paged device uses C12...C27 (1.28 sec)
 - Period 32 hops
- Inquiry operation similar to page

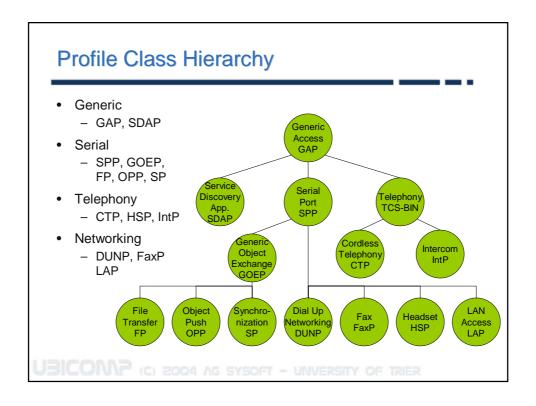
Baseband Packet Communication

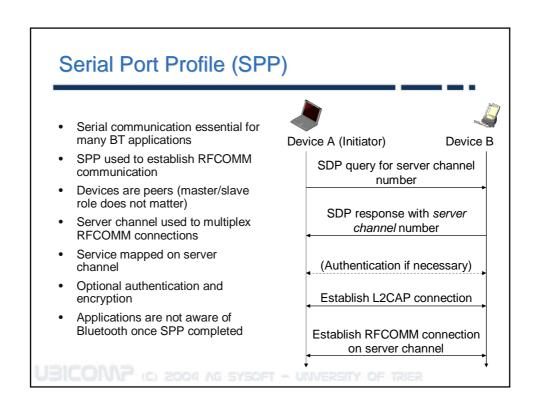
- Modulation: GFSK (application of FFT), 1 Mbps raw link speed
- Signaling Packets for inquiry, paging, polling, ...
- · Data communication via ACL packets
 - Master sends to slave or polls a slave to send
 - Multislot packets possible (1, 3, and 5 slots)
 - Frequency remains the same for multislot packets
 - Sending 5 slot packets in one and 1 slot packets in the opposite direction is possible
 - Maximum achievable rate 723.2 Kbps in one direction and 57.6 Kbps possible
- Voice Communication via SCO packets
 - Periodically reserved transmission intervals
 - One slot packets only
 - Communication in both directions support 64Kbps
 - SCO channels limited to 3

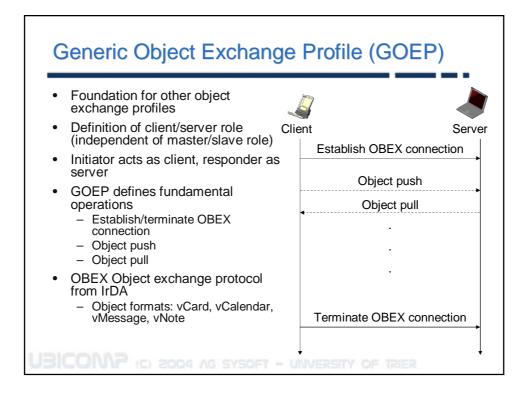


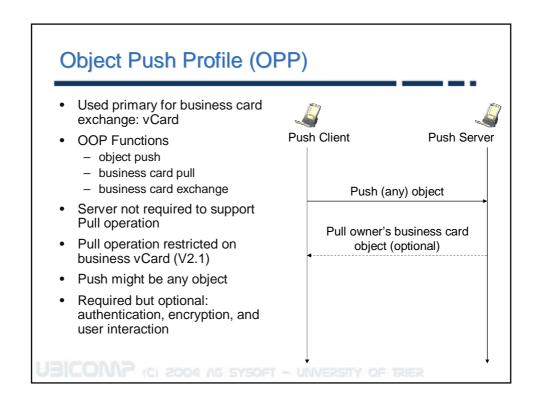
USICOIVIT (C) 2004 AG SYSOFT - UNIVERSITY OF TRIER

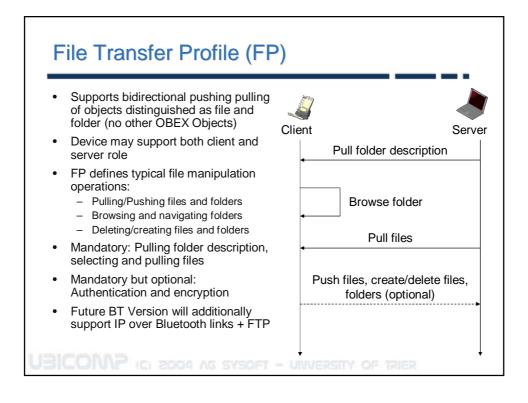

Communication over L2CAP

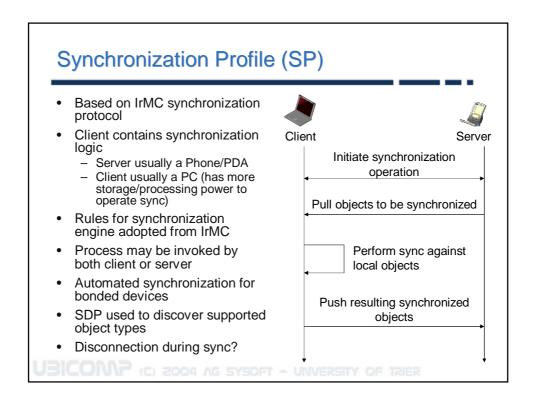

- L2CAP based on ACL packet
- L2CAP exports a maximum packet size information (max. 65k)
- Fragmentation of larger messages is up to higher layer protocols
- Communication between L2CAP layers based on logical links (channels)
- Each channel endpoint is assigned a unique channel identifier CID (16 Bit)
- Time for Link establishment in the magnitude of seconds

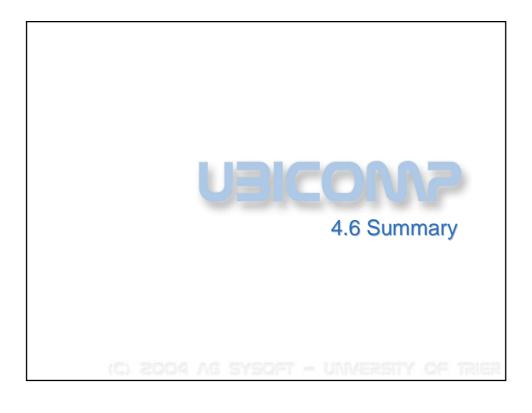

UBICON/P (C) 2004 AG SYSOFT - UNIVERSITY OF TRIER











Bluetooth vs. IrDA and WLAN

Feature	Bluetooth	IrDA	WLAN
Connection Establishment	Penetrates obstacles	Line of sight	Penetrates obstacles
Transmission pattern	Relatively spherical	Relatively narrow conical	Relatively spherical
Data rate	1Mbps	4Mbps	11Mbps and more
Range	10-100 meters	1 meter	300 meters
Power consumption	100mW	10mW	About 7W
Transceiver module	Expected \$5.00	<\$1.00	Similar to WLAN

Conclusion

- Bluetooth design goals: cheap and power efficient wireless communication
 - Short range communication
 - FHSS communication in 2.4GHz band
- Open Protocol stack specification (about 1000 pages) -> many product vendors
- Definition of Profiles (about 400 pages) -> many different device types
- Today's main Bluetooth application: Mobile Phones, Cable replacement
- Some of the usage models really addressed by Bluetooth today?
 (e.g. mobile ad-hoc networks)
- Discussion: Bluetooth opposed to WLAN

UBICOMP ICI 2004 AG SYSDET - UNIVERSITY OF TRIES